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Abstract

Purpose — The purpose of this paper is to contribute to the empirical evidence about crop yield
distributions that are often used in practical models evaluating crop yield risk and insurance.
Additionally, a simulation approach is used to compare the performance of alternative specifications
when the underlying form is not known, to identify implications for the choice of parameterization of
yield distributions in modeling contexts.

Design/methodology/approach — Using a unique high-quality farm-level corn yield data set,
commonly used parametric, semi-parametric, and non-parametric distributions are examined against
widely used in-sample goodness-of-fit (GOF) measures. Then, a simulation framework is used to
assess the out-of-sample characteristics by using known distributions to generate samples that are
assessed in an insurance valuation context under alternative specifications of the yield distribution.
Findings — Bias and efficiency trade-offs are identified for both in- and out-of-sample contexts,
including a simple insurance rating application. Use of GOF measures in small samples can lead to
inappropriate selection of candidate distributions that perform poorly in straightforward economic
applications. The f distribution consistently overstates rates even when fitted to data generated from
a f distribution, while the Weibull consistently understates rates; though small sample features
slightly favor Weibull. The TCMN and kernel density estimators are least biased in-sample, but can
perform very badly out-of-sample due to overfitting issues. The TCMN performs reasonably well
across sample sizes and initial conditions.

Practical implications — Economic applications should consider the consequence of bias vs
efficiency in the selection of characterizations of yield risk. Parsimonious specifications often
outperform more complex characterizations of yield distributions in small sample settings, and in
cases where more demanding uses of extreme-event probabilities are required.

Originality/value — The study helps provide guidance on the selection of distributions used to
characterize yield risk and provides an extensive empirical demonstration of yield risk measures
across a high-quality set of actual farm experiences. The out-of-sample examination provides evidence
of the impact of sample size, underlying variability, and region of the probability measure used on
the performance of candidate distributions.

Keywords Crop insurance, 8 distribution, Burr XII distribution, Mixture of normals,

Weibull distribution, Yield risk

Paper type Research paper

Considerable debate remains about the most appropriate methods for representing
uncertain yields in many contexts. Crop yield risk and related insurance evaluation
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applications provide an obvious and direct set of applications, with numerous models
to evaluate the likelihood of yields, identify coverage differentials, select policies and
coverage levels, and increasingly in ratings and development of private product
pricing applications. Likewise, successful usage of other risk management tools by
producers hinges on an accurate understanding of yield risk and its impact on revenue
risk. Policy responses to farmers’ risks, and evaluations of alternative policy designs,
however, often begin with historically calibrated cases, and empirical experiences that
are then fitted to a preferred candidate distribution and generalized to more complete
depiction of the possible outcomes. Even applications such as the performance of
so-called “Olympic averages” of yields and prices depend in a crucial way on the
underlying uncertainty that generates the sequences of observations used in the
construction. In each case, being able to appropriately represent yield risk has critically
important implications.

When faced with the need to represent crop yield distributions, the most common
response 1s to collect as representative a set of data as possible, and then use informed
judgment and stylized requirements of the application to select a functional form
to represent the data generating process and its resulting distributional form. There
is an extensive literature on goodness-of-fit (GOF) measures and informational
measures relating the data to the fitted distribution, and often simple in-sample
measures suffice for selection. However, some applications of the fitted distributions
are arguably more concerned with economic consequences associated with specific
types of errors. For example, most insurance applications involve a region of insurance
indemnification, such as the lower tail, and are not as concerned with other outcomes.
In such a case, the focus is often on a bias in implied insurance rates generated from
incomplete regions of alternative distributions. Sometimes the focus is on accuracy of
the mean (e.g. aggregate yield forecasting) or on extreme tails (capital requirements,
values-at-risk, and crop insurance applications) or variability around a level (for
hedging and other insurance applications, option pricing, etc.), or on overall fitting
performance (simulation of policy impacts, forecasting, etc.).

A slightly more subtle issue involves the treatment of first-stage fitting errors, and
evaluation of unknown distributional candidates in small samples. The true data
generating process is rarely known, and as a result, the flexibility of the candidate
distributions can influence small sample fitting results, even if not as similar in large
samples. For example, a f§ distribution with flexible limits may fit a small sample of
data generated from a lognormal process better than a fitted lognormal. Out-of-sample
techniques and other validation methods do reasonably well to help limit this type of
impact and identify “best” overall performance given more flexible fitting objectives.
However, it 1s less obvious how to compare the performance of alternative candidates
in more complex economic applications such as insurance evaluation when the
underlying “true” distribution is not known, and where the small sample performance
in the economic application may not be consistent. To examine this latter issue, one
could use known data generating processes and simply examine the performance of
the candidate distributions across sampling features to help understand the likely
performance of the candidates in various other conditions typical of cases where yield
models are often used.

This study contributes to the empirical evidence about yield distributions and then
uses two of the more plausible candidates to test their performance in small sample
applications of the type often confronting those modeling yield distributions. With
a high-quality farm-level corn yield data set from the Illinois Farm Bureau Farm
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Management Association (FBFM) from 1972 to 2008, alternative in-sample GOF
measures and associated insurance rates are examined across a set of flexible two-
and three-parameter distributions, as well as a semi-parametric and non-parametric
distribution[1]. Then, to investigate the efficiency and rate sampling properties
of alternative distributions, simulations are conducted in which different sized
samples are drawn from known parametric distributions, and are fitted to candidate
distributions; the fitted distributions are then used to estimate insurance rates
under each candidate distribution and compared to the known true values. This
process is repeated in order to derive the rate sampling distribution for each
candidate distribution. Given that the simulation begins with known starting “true”
distributions, it thereby essentially allows for a type of “out-of-sample” evaluation in
which we assess the underlying rate distribution directly — a related but more
specific objective in insurance contexts. Not surprisingly, the results show that more
flexible parametric and semi-parametric forms fit to data better (in terms of in-
sample bias and precision/efficiency) due to flexibility from more parameters or less
structure, but perform worse out-of-sample relative to more parsimonious forms,
such as the Weibull, 8, and Burr XII. An insurance pricing context is used to identify
a meaningful economic loss function to compare performance across distributions
under a common and important application.

Background
A long debated question among agricultural economists is the choice of the “best”
distribution for modeling crop yields, yet, no single family of distributions or method
of selection is widely accepted for any particular rating application. Among the
parametric family of distributions, many studies have examined normality, typically
rejecting its use because of the negative skewness and excess kurtosis generally
observed in crop yield data (Day, 1965; Ramirez, 1997; Atwood et al, 2003; Ramirez
et al, 2003). In contrast, Just and Weninger (1999) argued that the rejection of
the normal distribution in many previous studies is potentially at fault due to
methodological problems in typical yield distribution analyses. Other works (Nelson
and Preckel, 1989; Nelson, 1990; Hennessy et al., 1997) use a f§ distribution to model
crop yields. The f distribution is arguably the most highly examined parametric form
in empirical crop yield modeling literature. The f distribution is flexible enough to take
on varying forms of skewness and kurtosis, and is being bounded between zero and
a maximum value. It has also been argued to fit particularly well in lower tail regions
and be desirable due to its simplicity in use. Still other works attempt to examine
alternative parameterizations of crop yield distributions. Gallagher (1986) and Pope
and Ziemer (1984) use the 7 distribution, while Sherrick et al. (2004) find the Weibull
distribution to be a good candidate for Illinois farm yields. Both the y and Weibull
distributions are potentially desirable due to their ability to exhibit negative skewness
within a parsimonious specification. Claassen and Just (2011) examine a large number
of relatively short series from RMA of insurance purchaser’s data across extensive sets
of crop/county sets to assess intra-county heterogeneity and find a version the reverse
lognormal to do well in depicting yields. The inverse Gaussian distribution is
commonly used to model first-passage time in insurance applications and as a result
is also included as a flexible alternative.

Recently, non- and semi-parametric distributional forms have received more
attention in the empirical literature (Goodwin and Ker, 1998; Turvey and Zhao, 1999;
Ker and Goodwin, 2000; Norwood et al., 2004; Wang and Zhang, 2002; Ker and Coble,
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2003) because of their increased flexibility, particularly in modeling thicker distribution
tails. This increased flexibility allows the distributional form to cover a broader
set of skewness and kurtosis values, although forecasting may suffer from efficiency
problems due to their tendency to over-fit sample data. Accumulating evidence exists
which finds that in particular cases semi-parametric methods can outperform
parametric methods in similar applications in terms of out-of-sample efficiency (see e.g.
Norwood et al., 2004).

Data

This study utilizes a high quality, extensive farm-level corn yield data set from the
Illinois FBFM data set from 1972 to 2008. FBFM is a cooperative educational-service
program that assists farmers with farm and tax management decisions by providing
a comprehensive system of firm specific financial statements and standardized
business reports. FBFM has roughly 2,500 commercial scale grain farms in its record
keeping association, providing dependable and extensive yield histories on a set of
common standards for measuring and reporting financial and production data. This
data set is unique in the USA for its long panel of certified yield data, and is
representative of a wide cross-section of Illinois commercial grain farms. Criteria for
including farms samples included requirements to have: first, at least 20 years of
yields; second, farm size > 80 acres; and third, less than two consecutive years without
production data. These screens result in 2,088 remaining corn farms, of which 768
farms have more than 30 years of data.

The yield data are detrended to control for increases in productivity through time.
This study adopts a linear time trend as has been found to be a reasonable specification
for corn yields in this region (Zanini, 2001; Ozaki et al., 2008a). Four different data
aggregation levels are examined and results are compared for data detrended at the
state, district, county, and individual farms. The choice of aggregation when
detrending is highly debated. Previous work (see e.g. Atwood et al., 2003) suggests that
farm level detrending may result in inefficient trend estimates, while the state level
trends may exhibit unacceptably high degrees of bias. The overall implications of the
study were not sensitive to the level of aggregation when detrending, except that
farm-level results are considerably more variable, and deemed unreliable. Hereafter,
results are reported for the district level detrending procedure with others available for
more detailed comparisons. Summary statistics for the detrended yield data are
provided in Table I. The production intensity in the regions identified by FBFM as
East, Central, and Northwest generally correspond to the heart of the Corn Belt areas
with the greatest corn production.

In-sample GOF analyses
GOF tests across the candidate distributions are considered in two related ways. First,
each parametric distribution is compared and ranked using common GOF tests
individually, and in composite form. Then, to examine the performance in
a straightforward economic application, implied insurance rates are compared
across the fitted parametric and non-parametric distributions and to the directly
calculable empirical rates from the sample data.

The parametric distributions in this study (and number of parameters) include the
B (four), y (two), inverse Gaussian (two), normal (two), Burr XII (four), and Weibull (two).
Three most common GOF tests performed are the Kolmogorov-Smirnov (K-S),
Anderson-Darling (A-D), and y*tests. Each of the GOF tests differs slightly in their focus.
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Table 1.
Sample characteristics
from FBFM corn farms

Sample summary statistics
Farm Yield % Sample
Region® Trend® Mean® SD CV Skew. Kurt. Max Min count count acreage

NW 207 17381 2397 014 —-083 135 25234 4427 395 10,959 19.50
NE 186 17269 2446 014 —051 036 26510 46.03 176 4,662 8.30
West 212 17558 2817 016 —-060 0.60 27527 4837 94 2,647 5.06
Central 203 18182 2623 014 -0.75 093 28136 59.10 519 14,292 25.75
East 184 17149 2837 017 —0.86 081 253.68 5758 296 7,849 13.90
WSW 187 17759 2445 014 —-058 043 257.84 6208 151 4,106 6.93
ESE 161 15554 2673 017 —037 —0.09 239.09 4424 253 6,682 12.17
SW 171 13681 2602 019 —030 —011 22857 29.00 119 3426 341
SE 168 14255 2477 017 —-033 —0.01 23520 37.76 8 2277 497

State total 1:87 169.55 2595 020 —-066 069 277.79 3010 2,088 56900 100

Notes: *FBFM farms grouped by Crop Reporting District. ®Trend rates based on NASS Yield data.
‘Summary statistics for FBFM yield in bu./acre based on simple farm weighted values

The K-S test is a simple and well-known distribution-free measure of the congruence
between the fitted and empirical distributions, essentially measuring the vertical
distances between the empirical distribution function (EDF) and the fitted distribution.
It is regarded as being most influenced by the center of the distribution where data are
naturally more densely sampled. The A-D is calculated as:

+00

A2 =n / [F (1) — F(x) oo () (),

—00

where 7 is the number of observations, f(x) the fitted density function, F{x) the fitted
cumulative distribution function, and F,,(x) = N,/n, where N, is the number of X;’s less
than x (Stephens, 1974). The weight function used: w(x) = n/F(x)[1-F(x)] results in more
weight given to the departures in the tails of the distribution. Finally, the y*test places
equal weight on the center and tails of the distribution, and is calculated as:

s (0 - B
X = —E
i=1 i
where O; is the number of observations in the sth bin, £;=N x (F(Y,)-F(Y)) is the
number of expected data points in the ¢th bin, F(Y,) is the CDF of the upper limit of
the sth bin of the distribution, and F(Y)) is the CDF of the lower limit of the ¢th bin of the
distribution (Snedecor and Cochran, 1989).

Each of the candidate distributions is fit to each of the individual farm-level yield
series using maximum likelihood estimation. Then, the three GOF test statistics are
used to rank the performance of each of the six distributions. The GOF rankings for
the parametric distributional forms are summarized and tabulated in aggregate and
within each of the nine Illinois National Agricultural Statistics Service Crop Reporting
Districts (CRD) to group areas where production risks are likely similar. The results are
also summarized and tabulated by various farm characteristics, including the mean
and standard deviation of farm yield, the total number of yield observations, and farm
size as measured by total acreage.
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GOF results

The results for the parametric GOF tests are tabulated in Table II[2]. The first column
of Table II identifies the GOF test followed by the distribution examined. The body of
the table contains the weighted average of the test ranks constructed by the fraction
of times each rank was achieved. For example, under the A-D test in the Northwest
district, the Burr XII is ranked in order from one to six in 45, 37, 14, 3, 1, and 0 percent
of the cases, resulting in a combined ranking score 0.45x1+0.37 x 2+ 0.14 x 3+
0.03x4+0.01 x5+0.00x6=1.78. The table is shaded in blocks of each test
across six distributions by district, and ordered within each test type panel by the
overall rank.

Under the A-D test which is often favored when there is particular concern about
fitting in the extreme regions or both tails, the Burr XII distribution has the lowest
combined rank score in all districts. The Burr XII distribution also performs best
across all 1,956 farms, with a combined ranking score of 1.88. The Weibull and f
distributions are the next best fitting parametric forms, having similar combined
ranking scores across all regions and overall as well. The result patterns are similar
under the KS, and differ only slightly under the y*test where the f has a slightly better
average rank than the Weibull. An argument can be made for the highly flexible,
four- parameter Burr XII to be the best fitting in-sample across all farms, though it is
also expected to be more prone to over-fitting, especially as sample size declines.
The normal distribution performs relatively better in districts where the skewness is
lower (S and SE districts), compared to districts where the average skewness is highest
(East district), but is still not likely to be viewed as the “best” under typical metrics
or applications. The y and inverse Gaussian distributions are in fifth and sixth place
across every district and GOF test conducted.

District
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Test Distribution NW NE West  Central East WSW ESE SW SE Total

K-S Burr XII 1.98 2.18 211 1.92 1.92 2.19 2.29 2185 2.38 2.07
Weibull 2.49 2.51 2.61 2.49 2.35 2.64 2.67 2.68 3.05 2.54
B 2.53 251 2.43 2.60 2.31 2.69 2.85 2.69 241 2.56
Normal 3.47 3.29 3.44 3.44 3.61 3.21 3.02 3.04 3.01 3.35
Y 4.53 4.51 4.40 4.55 4.80 4.26 4.17 4.24 4.14 4.47
InvGauss

A-D Burr XII 178 1.90 1.92 172 1.89 1.96 2.10 2.04 2.17 1.88
Weibull 2.45 2.66 2.64 247 2.34 2.59 2.84 2.77 2.88 2.56
p 2.67 2.50 2.42 2.68 2.54 2.93 2.90 271 228 2.66
Normal 3.50 3.40 3.45 3.50 3.61 3.18 2.95 3.05 3.20 3.38
y 4.67 4.64 4.63 4.71 4.75 4.47 433 4.48 4.53 4.61
InvGauss

x? Burr XI | 2.49 2.37 2.81 2.51 2.43 2.66 2.54 2.63 2.72 2.53
p 2.69 2.62 2.48 2.50 2.39 2.78 2.82 2.91 2.45 2.61
Weibull 2.67 2.60 2.92 2%/8 2.76 2.94 2.70 271 2.88 2.74
Normal 3.26 3.40 BHIE 3.25 Bl 3.09 3.19 3.09 3.20 3.24
y 3.88 4.01 3.67 4.02 4.11 353 875 3.66 8375 3.89
InvGauss

Weighted Burr XII 1.85 1.97 2.06 1.80 1.81 2.06 2.22 2.30 2.45 1.96
Weibull 2.45 2.51 2.66 2.45 2.39 2.56 2.67 2.66 2.96 2.52
p 2.72 2.61 2.50 2.66 2.48 2.82 2.87 2.77 2.36 2.67
Normal 3.46 3.36 3.44 3.47 3.58 3.19 3.03 3.01 2.93
y 4.52 4.55 4.34 4.61 4.75 4.38 4.22 4.27 4.30

Table II.
Goodness-of-fit rankings:
[llinois districts, FBFM
corn farms
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Empirical rating analysis

It could be the case that a particular distribution fits best in-sample, but that the region
of the distribution of greatest concern in an economic application results in different
rankings. For example, it could be the case that a very flexible distribution could fit in
the tails better than a distribution that accurately characterizes the mean, but has less
ability to relate mass in the tails. This argument has been advanced in favor of the
p distribution in certain insurance contexts as its fit in the lower tail may be suitable,
and its fit in the upper regions inconsequential. To compare the results in a context
with economic importance, the fitted distributions are used to construct simple
insurance rates (conditional expected values in specified regions) and compared
to the empirical rates across the sample. To first provide a visual understanding
of the process, four representative corn farms are taken from Dekalb, Marion,
and McLean counties, as typical representations of the Northern, Southern, and
Central parts of Illinois, respectively. The four highest ranking distributions from
the previous section are investigated (Burr XII, Weibull, 8, and normal), along
with one semi-parametric (two-component mixture-of-normals (TCMN)), and one
non-parametric distribution (Gaussian kernel density estimator) to extend the analysis
to popular flexible forms.

The Gaussian kernel density estimator places a kernel (or bump) at each yield
realization, and then the sum of the densities of the kernels forms the shape of the
non-parametric curve. The Gaussian kernel density estimator probability density
function (PDF) is:

fiulo) = %Z,K(x ;l”)

where K(x —x;/h) =1/ 2me—)*/2¥ i the Gaussian kernel function, and
Silverman’s rule of thumb is used to set the value for the smoothing parameter,
h (Silverman, 1986).

To provide a visual illustration, empirical CDF plots of four Illinois farms are provided
in Figure 1. In examining the two taken from McLean, note that both have a notable
irregular step in the left portion of the EDF. The kernel density estimator and the
mixture-of-normals distribution are more flexible and tend to associate more mass near
this “spike,” and also appear to fit well throughout the center and right tail of the
distribution. With respect to the parametric distributions, the Weibull and Burr XII
distributions virtually overlap and tend to reflect the left tail better than the normal and
p distributions. In general, when a relatively extreme value appears in the left tail, the
Weibull and Burr XII distributions exhibit more flexibility to associate mass with that
point than either the normal or f distributions. The normal distribution performs the
worst, most likely due to its inability to capture skewness, but when the data
are almost symmetric, such as in DeKalb-316, the normal performs comparably to
the Burr XII and Weibull distributions. However, the flexibility that is exhibited by the
mixture-of-normals and kernel density estimator can result in over-fitting in sample
and thus may limit their out-of-sample forecasting ability. On the other hand, the Weibull
and Burr X1I distributions are better able to reflect out-of-sample variation, and thus may
be more desirable in out-of-sample contexts such as that of crop yield forecasting,
but might do a worse job in applications that have more significant consequences of
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mischaracterizing extreme events. The context in which the fitted distributions are used
thus likely matters to the selection of the “best” distribution, based on the economic costs
of mis-calibration to different regions of the probability measure.

To illustrate the economic implications of the choice of distributional form, an
msurance application is used in which bias and efficiency can be examined at various
probability partitions. Specifically, all distributions are first fit to each farm’s data; each
are then used to calculate farm-level yield insurance rate estimates at coverage levels of
85, 75, and 65 percent. The expected yield insurance rate is expressed for each farm
and candidate distribution as:

InsRate; g =

Max{0,k; — Y;} 14 :(Yi]0; ¢)dY;
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where k; = Cover x E(Y;), E(Y;) and Y; are the expected and realized yields for farm ¢,
Cover the coverage level, and f; ;(Y;|6;) the probability density function for distribution
d defined by parameter set 0; ;. The rate estimates are then compared to the average
empirical rates from the underlying farm-level yields to evaluate in-sample bias
and rate efficiency across all farms. The bias for each distribution is calculated as
the difference between the implied insurance rate and the empirical or “burn” rate.
A measure of in-sample efficiency is constructed using the root mean squared error

(RMSE) across farms: RMSE; = /1", (InsRate; 4 —BumRatei)z where m is the
number of farms in the sample being evaluated. Taken together, these provide
a useful empirical indication of important performance issues in an insurance rating
application.

Rating analysis results

The results for the in-sample rating analysis are provided in Table III. Table III is
organized with sections for average, bias, and efficiency tabulated for each of the
distributions examined, and then the body of the table provides results for three
possible partitions of the fitted probability measures corresponding to 85, 75, and
65 percent coverage insurance. Individual results are tabulated for farms in each of the
nine CRDs and the overall state results. The bias and efficiency (RMSE) values are
reported as percentages of their associated empirical burn rate. The shaded areas
within the bias and efficiency statistics indicate the distributional form that contains
the lowest absolute value under each district and coverage level. For example, in the
case of the NW district at the 85 percent coverage level, the absolute value of the bias
for the f distribution is highlighted as it is closest to zero when compared to the other
distributions. The bolded values within the bias section indicate distributional rate
estimates that are larger than the empirical/burn rates (positive rate bias). For example,
all bias values under the kernel density estimator are bolded as they are all greater
than the empirical rate.

The average of the empirical rates ranges from a high of 3.84 bushels/acre in the
East district, to a low of 2.34 bushels/acre in the West Southwest district at an 85
percent coverage level. The averages of the empirical rates for each FBFM farm
across all districts are 3.00 bushels/acre, 1.23 bushels/acre, and 0.43 bushels/acre for
the three coverage levels. Focussing on the bias test statistic, the § distribution
performs best in 15 of the 27 coverage level-district pairs, and also at a 75 and
65 percent coverage level for the state as a whole. The TCMN and Weibull fit the next
best in terms of bias with six each of the 27 combinations, respectively. The normal
distribution performs least well in all districts. Interestingly, the rate estimates
from both the f and kernel density estimator distributions consistently overstate
the empirical rate. The rate estimates from the Weibull, Burr XII, and TCMN
distributions, on the other hand, consistently understate the empirical rates 86.7,
96.7, and 100.0 percent of the time, respectively. A surprising characteristic of the
differences between the empirical rates and the fitted rates from the distributional
forms is the fact that the kernel density estimator actually performs the worst in
terms of bias relative to the empirical burn rate. In contrast and unsurprisingly, the
kernel density estimator is generally the most efficient distribution in-sample as
measured by the RMSE statistic. The kernel density estimator is the most efficient
in 16 of the 27 coverage level/district combinations, while the TCMN is the most
efficient in the remaining 11.

WWw.mane



A
c
©
Q@ =
= & > ERZEE E
D) L& = =8
2.9 e} Lye3 A
- Qe 428
= S S cSE o
=) HE508 5
o= TRl
r%u .mwmda
SR7 8
e EE
o R

19A9] 98BI9A0D
PUE JOLISIP £q o7el wng/ [edLnduwd £q PIpIAIP SULIE] [[e 0} HSIAR dU3 Jo an[ea pajedxo ayy st (jusdsed) HSIARY, ‘[2A9] 93819400 PuE JLISIP Aq oJer g/ [eduidws Aq POPIAIP SULTE] [[e 10f [2}el [EUONNQLISIP PoNY-ojel wing/ [edtduo]
Jo anfea pajadxa St (jueosed) seig], ‘(o] 95LI0A00 PUE JILYSIP Aq SULTE] [[e 10] [(@Yey PoyeLNISH-09jURIEN PRI ‘0)Xew] ojer wng [eondury, [2A9] 98819400 PUB PLOSIP Aq SULIES [[2 J9A0 SO}e1 [BUOHNGLISIP PINL JO aN[eA Pojoadxy, 9jel
wingy [eotnduwd 3y UL} 19)ea1s ST aJe1 PINIJ Ay} YOIYM I0f SIN[BA SBI( JUasaIdaI SAN[EA JI[EIL Y[, ‘[2A] 9FLIA00 PUE PLUSIP A¢ aN[EA AU 10 SBIQ IN[OSAE ISIMO] Y YHM ULIOJ [BUOHNALISIP 3y} Judsaida sanfea PajySiysiy Ay, :SION

%ULy %ULe %I8L %V9 %LE %ec %95 %€ %6l %L %8E %lc %ol %ee %l %EIE %008 %LEL %8E %GG %I %9y %I %8L %0S %LE %61 %SE %¥e %8I [PuId
NWETL %LIE %S0 %8S %% %L %EV %6l %6 %0S %EE %IT %SST %Eh %8G %69y %99 %LVl %EL %66 %l %59 %SE %81 %6V %.lc %VL %O0LL %¥9 %9¢ NIAOL
%860L %IVS %E€SE %O0LL %eS %ee %16 %ar %81 %8VL %L9 %8 %68L %VL %SE %0LL %IV %E0Z %IIL %SS %Se %E9 %eE %6L %ael %LS %Le %6IL %E9 %0 q
%GLIL %699 %9TE %EOL %0S %EC  %ES %IV %61 %L6 %6V %¥e %ILL %8L %9E %GSOL %LL9 %V6E %EGL %O0L %LlE %T6 %95 %0€ %9GL %Gl %SE %LEL %08 %0F  IIX img
%LEIL %929 %€LG %V6 %EV %8L %VL %SE %ST %68 %Gy %8T %691 %¥L %0E %E00T %V09 %88% %Vel %O0L %IE %E6 %95 %¥e %Iel %L9 %8G %SET %LlL %eE [BULION
%LBIL %089 %09E %V0T %IS %9% %L8 %EV %Ig %I0T %ES %LE %08T %08 %86 %GS0L %619 %96E %SCL %IL %8E %6 %LS %CE %Llol %EL %le %LEL %I8 “%dh TP (%) ASINI
%908 %V0c %VSL %V %IE %08 %bP %8¢ %Ll %0S %EE %0 %lv %S¢ %8I %vce %9GI %GIL %98 %l %vl %cE %l %91 %€ %08 %91 %08 %91 %S Teumy|
%606 %EECL— %8G %LI— %6~ %G— %6~ %S~ %G— %0L— %L~ %G— %96~ %Ll— %6= %VSI— %G8~ %9I€— %Ie— %SI— %9~ %Ve— %Ll— %S~ %Gl= %0L— %V— %Er— %8c— %V1— NINOL
%0LL %99 %8G %IV %0¢ %8 %EE %Vl %G %L %EE %EL %E9  %ET %Pl %8E  %LO0— %80 %L %l— %E %G %S~ %v %cc %S %9 %l— %G~ %9 q
%066— %VTE= %L6I— %S~ %8— %8~ %E= %L~ %8~ %I %S~ %8~ %LL= %ee— %EL~ %6'SS— %STV— %L6G— %05~ %0v— % Vo= %8E— %EE— %L1~ %66~ %16~ %81~ %8S~ %EV— %¥e—  IX Lng
%GEG™ %IV~ %E 06— %EG— %8T— %0T— %LI= %ST— %6~ %06— %LL— % IL— % IS~ %eV— %18— %LT19~ %6'Sh— %V Ve— %L9~ %18~ %Se— %SG~ %ah— %LI= %S~ %1v— %06— % 1L— %ES— %S~ [BULION.
%EEE™ %G9~ %L~ %F  %L— %¥— % %0 %V~ %0I %L %E— %8~ %ST— %6— %SVS— %0€r— %¥82— %= %Ve— %61~ %1E— %L~ %G~ %VE~ %98~ %E1— % VS~ %8E— %61~ MqRm
950 8T 9¥E€ 290 19T GL€ 180 66T €% €90 89T 86€ 1€0 10T LLG €80 002 8G% LV0 €T ¥e€ L90 ¥LT ¥6€ LVO LgT OT€ 9¥0 8IT &8¢ [PUR
760 90T €8¢ S€0 2T L0 IS0 L¥T 29¢ 860 61T 92¢€ 910 290 €Ic LS0 85T  IL€ 660 960 L9¢ 660 ST 06€ €0 960 95 g0 €L0 11T NINOL
050 TI€T  8T¢ 090 8¥yT L&EC G20 8LT 88¢ T1L0 OLT LL€ S€0 00T L9¢ 1.0 oLT /8¢ Ov0 ¢2I'T €¢ 150 &¥l @S¢ ¥r0 ¥IT €8¢ 90 660 097 q
960  ¥80 Iy OF0 VIT 88 650 SVT 6€€ ¢¥0 IgT 90€¢ 810 ¥90 20C 060 960 0L¢ 610 890 LI'G 1€0 00T 8¢ &z0 €L0 LIc 910 850 981 IIX ting.
060 €40 68¢ €0 20T @8¢ L0 €ET 9¢€ €€0 SOT L6Z 010 2LV0 98T 960 ¥60 16¢ ¢l'0 SG0 €I¢ €0 980 08 910 3G90 ¢olc 110 870 V8T [BUWLION
620 060 €92 FFO 2T 20€ 090 GST L9€ 9¥0 62T Tg€ 060 690 €172 1€0 660 GL¢ T30 L0 06 G€0 60T 86C 720 8L0 0€g 8T0 €90 L6T qem
€0 €T 00€ gr0 €T FIE 950 99T 0L€ Z¥0 LgT €€ 120 180 ¥€Z 890 €LT  ¥8E L60 €IT ¥8C 190 0ST 6€€ 980 GOT 992 80 10T ¥ qeomdwy

%99 %SL %98 %99 %SL %G8 %G9 %SGL %% %99 %SL %8 %S9 %GL %G8 %G9 %SL %G8 %99 %SL %I %99 %GL %G8 %G9 %SL %8 %S9 %SL %S8 uonnqrusiy
[EjoL as MS asd MSM segq [equa) 1S9 AN MN PLosiq
S[PAYT 95RIDA0)




AFR
74,3

358

The RMSE values of the Weibull and Burr XII distributions are highest among the
distributions tested with percentages relative to the empirical rate of 334 and
31.6 percent, respectively, at an 85 percent coverage level. For all the distributions in
this section, the average RMSE across every district increases as the coverage level
decreases. For instance, the RMSE values for the f§ are 25.0 percent at the 85 percent
coverage level, 53.6 percent at the 75 percent coverage level, and 114.5 percent at the
65 percent coverage level.

Overall, the non- and semi-parametric distributional forms are found to perform well
in terms of in-sample efficiency. Nevertheless, in both the GOF examination and the
empirical insurance application, the 8, Burr XII, and Weibull distributions substantially
outperform the other parametric distributional forms (normal, 7, inverse Gaussian).

Simulation evaluation of distributional performance
Next, specific types of out-of-sample fitting errors are examined. Starting with known
data generating processes, samples of differing sizes are drawn, and then four
candidate distributions — the Weibull, 3, empirical, and TCMN — are fit to the samples
and evaluated using a standard insurance rating framework where the implied
insurance rates are compared to the underlying true rate. This process is repeated
5,000 times for each candidate generating distribution, and the resulting rates implied
by the fitted distributions then compared to the known true rate. This exercise allows
an out-of-sample assessment of the bias and efficiency of these distributions in terms of
rates generated relative to known underlying distributions as an approach to
demonstrate the likely performance of the distributions in other applications where the
underlying true data generating process cannot be known with certainty. Importantly,
if a particular form generally results in “best estimates” of rates regardless of the
actual data generating process, then its use may be justified regardless of the
underlying data generating process. On the other hand, if a given distribution results
in large mistakes, even if it is correctly identified as the DGP, then it may not be the
preferred candidate for modeling risk in the economically important application.
Both Weibull and f are used as the data generating distributions over various
sample sizes (ten, 15, 20, and 30) and over ranges of yield statistics consistent with the
samples from the Illinois farms in the Central region. Specifically, the Weibull and S
distributions are constructed to represent pseudo-farms defined with mean yields
of 160 and 180 bushels/acre, and three standard deviation levels of 20, 30, and
40 bushels/acre to provide a meaningful context to evaluate performance. The Weibull
distribution parameters are established for each case using method-of-moments
approximations of Garcia (1981). For the f8 distribution, the starting lower limit is
bound at zero and the upper limit is set equal to three standard deviations above the
mean[3]. Next, a method-of-moments approach is used to approximate the shape and
scale parameters of the Weibull distribution. After drawing samples from the defined
distributions, the parameters of the fitted Weibull, fitted 5, and TCMN distributions are
estimated using maximum likelihood estimation, while the fitted insurance rates from
the empirical distribution are calculated in the same manner as the empirical burn
rates in the previous section.

Simulation results

Summary results for a case viewed to be typical in much of Illinois with an expected
corn yield of 160 and yield standard deviation of 20 bushels/acre are reported in
Table IV[4]. The table is organized with four stacked vertical panels containing each of
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Data generating process

Weibull
Coverage level Coverage level
85% 75% 65% 85% 75% 65%
Statistic “True” 1.5873 0.4309 0.0952 1.4242 0.3021 0.0436
n=10 Distribution
Average Empirical 1.60 0.44 0.10 1.42 0.30 0.04
B 2.80 1.39 0.70 281 1.39 0.70
Weibull 1.61 0.49 0.13 1.67 051 0.14
TCMN 1.30 0.32 0.07 1.19 0.23 0.04
Bias (%) Empirical 0.7% 24% 24% —02% —0.7% 1.6%
p 77% 222% 632% 97% 359% 1503%
Weibull 1% 14% 39% 18% 69% 212%
TCMN —18% —25% —24% —16% —25% —11%
RMSE (%) Empirical 121% 224% 438% 115% 233% 592%
B 215% 562% 1707% 242% 815% 3741%
Weibull 90% 139% 228% 98% 198% 498%
TCMN 117% 185% 307% 111% 181% 383%
n=15
Average Empirical 1.58 043 0.10 142 0.30 0.04
B 248 1.07 0.47 2.36 0.98 041
Weibull 1.60 047 0.12 1.69 0.50 0.13
TCMN 1.38 0.33 0.07 1.28 0.25 0.04
Bias (%) Empirical —0.4% 0.9% 5.8% 0.0% —0.8% —4.7%
B 56% 149% 393% 66% 224% 840%
Weibull 1% 9% 26% 19% 67% 195%
TCMN -13% —24% —25% -10% —18% 5%
RMSE (%) Empirical 97% 180% 368% 92% 184% 430%
p 155% 378% 1051% 158% 488% 1998%
Weibull 72% 105% 160% 80% 161% 390%
TCMN 96% 151% 252% 91% 152% 291%
n=20
Average Empirical 1.58 042 0.09 143 0.30 0.05
B 212 0.80 0.30 2.05 0.74 0.27
Weibull 1.60 0.46 0.11 1.70 0.50 0.13
TCMN 144 0.34 0.07 1.33 0.27 0.04
Bias (%) Empirical —0.7% —21% -5.3% 0.5% 0.4% 7.2%
p 33% 86% 214% 44% 146% 513%
Weibull 1% 7% 20% 19% 65% 187%
TCMN —-9% —21% —24% —6% —12% 1%
RMSE (%) Empirical 83% 150% 293% 83% 167% 414%
B 112% 249% 624% 119% 342% 1304%
Weibull 62% 89% 131% 72% 144% 347%
TCMN 84% 132% 222% 82% 142% 286%
n=30
Average Empirical 1.59 0.44 0.10 1.42 0.30 0.04
B 1.87 0.60 0.18 1.76 0.53 0.15
Weibull 1.59 0.45 0.11 1.70 0.49 0.12
TCMN 1.50 0.37 0.08 1.36 0.27 0.04
Bias (%) Empirical 0.5% 1.5% 41% —0.1% —0.3% —24%
p 18% 40% 93% 23% 75% 239%
Weibull 0% 4% 12% 19% 63% 175%
TCMN —5% —13% —16% —5% —10% 1%
(continued)
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Bias and Efficiency
Performance of known
Distributions
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Table IV.

Data generating process

Weibull
Coverage level Coverage level
85% 75% 65% 85% 75% 65%
RMSE (%) Empirical 67% 125% 252% 66% 133% 320%
p 80% 159% 360% 78% 195% 641%
Weibull 50% 1% 101% 59% 119% 281%
TCMN 69% 115% 188% 66% 117% 237%

Notes: Shaded entries have lowest absolute bias of efficiency value by district and coverage level.
The italic values represent bias values for which the fitted rate is greater than the empirical/burn rate.
All values in table from distributions with p=160; ¢ =20

the four sample sizes examined. The left hand set of results correspond to an
underlying Weibull distribution used to generate the samples and the right hand side
with an underlying f distribution. Coverage levels of 85, 75, and 65 percent are
tabulated under each case. For each sample size, the average rate (average) in bushels/
acre, the bias, and the RMSE across all coverage levels for each of the four distributions
are tabulated. The bias and efficiency (RMSE) are presented in terms of percentages
relative to the known theoretical rate.

The true rates from the Weibull distributional form are slightly larger than the true
rates resulting from the f at all coverage levels given common sample statistics.
However, the true rates from the distributional forms do converge as the standard
deviation is increased.

Remarkably, the fitted f consistently overstates rates, and by an even greater
amount when the “true” data generating process starts as a § than when the data are
actually sampled from a Weibull. The bias is rather large, ranging from 17.3 to
65.6 percent in small samples (z =10 or 15) at the 85 percent coverage level, with an
increasing bias as the coverage level is reduced. At low coverage levels, the bias is
typically several hundred percent, though the actual numeric value is often small.
These findings hold across sample size. In contrast, the Weibull and TCMN perform
quite well in terms of bias regardless of the mean — a robust result to changes in the
standard deviation, sample size drawn, and across both true underlying distributions.
An implication is that if the underlying data generating process is not known, the
S may not be a good candidate relative to the Weibull for parameterizing the ratings
distribution, even if its in-sample GOF performance is superior.

The bias of the empirical distribution is lowest among the distributions tested
across all categories, except for six in which either the Weibull or TCMN is best;
though the empirical rarely displays the lowest RMSE. At an 85 percent coverage level,
the rate bias of the Weibull and TCMN distributions is typically < 3 percent, while the
rate bias of the empirical distribution is <1 percent when the standard deviation of the
underlying is 40 bushels/acre and 7 = 15; and at a 65 percent coverage level the bias is
always <10 percent for the Weibull and mixture-of-normals and < 1.5 percent for the
empirical. In general, the bias decreases as the sample size increases, and increases at
lower coverage levels.

In terms of rate efficiency, the RMSE of the fitted 8 rates is, on an average,
34.8 percent greater than the RMSE of the Weibull fitted rates at a coverage level of
85 percent; 114.0 percent greater at a 75 percent coverage level; and 424.2 percent
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greater at 65 percent. In comparison to the TCMN, the Weibull typically performs
better in terms of out-of-sample fitting, although in a few cases they perform similarly.
The efficiency of the fitted distribution appears to be lower at lower coverage levels,
and naturally also increases as the sample size increases. At a sample size of 30, the
fitted rates of the Weibull are more efficient than the fitted rates of the TCMN by 7.5,
13.4, and 18.1 percent at coverage levels of 85, 75, and 65 percent, respectively.

Overall, the parsimonious two-parameter Weibull tends to consistently outperform
the TCMN, empirical, and f in terms of out-of-sample efficiency, and is also comparable
in performance to the mixture-of-normals in terms of bias, but is slightly more biased
than the empirical distribution in fitting to samples used in a context to establish
insurance rates.

Conclusions

Issues surrounding the choice of distribution for modeling yields, as well as the
manner in which one should go about evaluating and comparing them, remains
a contentious issue. This study analyzes the issue in a direct empirical manner using
standard GOF and crop insurance rating perspectives with a comprehensive data set
from the Illinois FBFM covering corn yields from 1972 to 2008. With three standard
GOF tests, this study examines the in-sample fitting performance of six commonly
cited in the crop yield field parametric distributional forms. This study develops an
obvious extension to examine in-sample rate bias and efficiency of several alternative
parametric and non-parametric distributions. Finally, this study uses a simulation
approach to compare the out-of-sample bias and efficiency of the 8, Weibull, empirical,
and TCMN distributions.

The results from the first section show that the Burr XII, Weibull, 8, and normal
distributions perform better than the y and inverse Gaussian distributions at
representing yield samples across virtually all farm conditions. While the results from
the second section demonstrate that the TCMN and kernel density estimators are the
least biased in-sample, the results from the simulation analysis suggest that the more
parsimonious Weibull distribution outperforms both the  and the TCMN on the basis
of out-of-sample efficiency, particularly in small samples. The results of the simulations
illustrate the bias-efficiency tradeoff when evaluating distributions with different levels
of parameterization, and also add insight to the in-sample vs out-of-sample question
as it relates to crop insurance rating and distribution selection. Most striking is that
the use of simple GOF measures in small samples can lead to the inappropriate
selection of candidate distributions that perform poorly in straightforward economic
applications. In particular, this study finds that the fitted f consistently overstates
rates even when fitted to data generated from an underlying f distribution. The small
sample performance favors the Weibull distribution in this application, though other
distributions not tested could potentially perform even better.

This study employs a single series approach (i.e. single farm) in evaluating GOF
and generated insurance rates. Yet, insurers typically group large numbers of like
farms together when making rates. Thus, further research is needed in order to assess
the sampling distribution questions addressed herein in a more comprehensive
framework comparable to that typically experienced by insurers. Also, the out-of-
sample simulation analysis is based on simulated pseudo-data from known parametric
distributions, and thus the out-of-sample results found here may not always carry over
to cases representing actual data for any particular application (e.g. if the data have
larger tails than the fitted f and Weibull distributions used here). Thus, further work is
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needed to evaluate out-of-sample rate performance of other starting distributions, such
as fitting a kernel density estimator to actual yields and then drawing yields from the
fitted kernel density estimator.

Notes

1. Most studies have examined county level data which are more stable than farm-level data
and tend to have longer samples available from publicly collected and maintained sources.
The data in this study represent the largest consistently collected farm level data that we are
aware exists.

2. In some cases, the f distribution did not converge regardless of the choice of upper limit, and
as a result, some samples were excluded from further analyses; the remaining sample was
not qualitatively affected. The number of FBFM farms in each region and the total FBFM
farms in Illinois for this application after eliminating cases with no convergence of the f are:
Northwest — 379, Northeast — 154, West — 88, Central — 492, East — 280, West Southwest — 140,
East Southeast — 236, Southwest — 111, Southeast — 76, and state total — 1,956 of the 2,088
original farms.

3. Other limits are also tested and the results for insurance applications were found to be
insensitive.

4. Results from other cases identified earlier are qualitatively similar and are available from
authors upon request.
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